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Abstract
Using density-functional molecular dynamics simulations we analysed the
effects of the cooling rate on the physical properties of GeS2 chalcogenide
glasses. Liquid samples were cooled linearly in time according to T (t) =
T0 − γ t where γ is the cooling rate. We found that our model leads to a
promising description of the glass transition temperature Tg as a function of
γ and gives a correct Tg for experimental cooling rates. We also investigated
the dependence of the structural properties on the cooling rate. We show that,
globally, the properties determined from our simulations are in good agreement
with experimental values, even for the highest cooling rates. In particular,
our results confirm that, in the range of cooling rates studied here, homopolar
bonds and extended charged regions are always present in the glassy phase.
Nevertheless, in order to reproduce the experimental intermediate range order
of the glass, a maximum cooling rate should not be exceeded in numerical
simulations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

During the last 15 years the steadily growing interest in chalcogenide glasses has led to
numerous works. This is true in particular for germanium disulfide glasses for which a large
number of experimental [1–4] and theoretical [5–8] studies have been carried out. Indeed its
known properties—used, for example, in optical amplifiers, memory switching devices and
anti-reflection coatings [9]—make it a good candidate for intensive research.

Among the different research methods, molecular dynamics (MD) simulations are a very
interesting tool for providing detailed information on the physical properties of such glassy
systems. Firstly because they allow one to investigate the structure in full microscopic detail
giving access to the position of the atoms, and secondly because they are useful for studying
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dynamic phenomena accessible to such simulations, e.g. for timescales between 10−13 and
10−8 s.

If the temperature of a liquid is decreased so much that the relaxation time of the system
becomes longer than the timescale of the computer simulation or of the experiment, the system
undergoes a kinetic arrest and, provided that it does not crystallize, will undergo a glass
transition and remain trapped in a disordered configuration. However, it has been demonstrated
in both experiment [10, 11] and computer simulations [12, 13] that the properties of the
resulting glass, like the density or the glass transition temperature, will depend on its thermal
history and in particular on the rate at which the sample is cooled down.

Previous studies [5–7] have already validated our ‘cook and quench’ model to produce and
study GeS2 glasses using approximate ab initio molecular dynamics simulations. Nevertheless,
because of the timescale of our computer simulations, which is many orders of magnitude
shorter than the typical experimental one, the glass transition temperature, for example, appears
to be significantly higher than the one observed in the laboratory (∼750 K [2, 14, 15]), and thus
it is necessary to see how the properties of the so-obtained glass depend on the way in which it
was produced.

Thus in the present paper we focus on the effects of the cooling rate on some physical
properties of glassy GeS2. Firstly we investigate how cooling rate affects the glass transition
temperature Tg and secondly we study how it affects the structural properties of the glassy
samples.

The paper is consequently organized as follows. In section 2 we briefly present the
theoretical model used in our calculations, results and discussions are presented in section 3,
and finally in section 4 we summarize the major conclusions of our work.

2. Theoretical framework

Computations were performed using Fireball96, an approximate ab initio molecular dynamics
code based on the local-orbital electronic structure method developed by Sankey and
Niklewski [16]. The electronic structure is described using density functional theory (DFT) [17]
within the local density approximation (LDA) [18] and the non-local pseudo-potential scheme
of Bachelet, Hamann and Schlüter [19]. To reduce the CPU time we used the non-self-
consistent Harris functional [20] with a set of four atomic orbitals (one ‘s’ and three ‘p’) per
atom that vanish outside a cut-off radius of 5a0 (2.645 Å). This model has been successfully
used for the last 10 years for several different chalcogenide systems [5–7, 21–23].

All the calculations of the present simulations were performed in the microcanonical
ensemble, with a time step �t = 2.5 fs and using only the � point to sample the Brillouin
zone. The initial configuration of our system was a crystal of α-GeS2 in a cubic cell of
19.21 Å containing 258 atoms with standard periodic boundary conditions, melted at 2000 K
for 60 ps in order to obtain an equilibrium liquid. Then, we relaxed this system further at
2000 K for 50 ps and we chose five different liquid samples (approximately every 10 ps)
during this process. Each sample was then quenched down to 300 K through the glass
transition temperature Tg. Quenches were carried out by a linear velocity rescaling according
to T (t) = T0 − γ t , where γ is the cooling rate. Six different cooling rates were used: 3,
0.6, 0.3, 0.12, 0.09 and 0.06 × 1014 K s−1. At 300 K each sample was relaxed over 50 ps,
i.e. 20 000 time steps. Configurations were saved every 20 steps and the results were averaged
for each sample over these 1000 configurations. Furthermore we averaged the results for the
five samples of each cooling rate, thus all the data presented below have been averaged over
5×1000 configurations, and the error bars (when given) represent the usual standard deviation.
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Figure 1. Average potential energy as a function of the temperature and linear regressions above
and below the glass transition temperature for a sample cooled at 0.09 × 1014 K s−1.

Figure 2. Glass transition temperature as a function of the cooling rate, fit and extrapolation to very
low cooling rates—comparison with experiment [2, 14, 15].

3. Results

3.1. Glass transition

As is usually done in simulations we tried to identify the glass transition of our samples by
representing the evolution of the average potential energy as a function of the temperature
during the quench (an example is proposed for one of the samples cooled at 0.09 × 1014 K s−1

(figure 1)), the glass transition being localized by the change in the evolution of the energy. The
glass transition temperature Tg is determined by the intersection of the two linear regressions
at high and low temperature (figure 1). For each cooling rate we averaged the values of the Tg

obtained for each of the five GeS2 samples, and thus we obtained an evolution of the average Tg

with the cooling rate. As shown in figure 2 the error bars remain huge, indicating insufficient
sampling (it is worth noting that the computer time needed to perform the simulations for the
lowest values of γ is of the order of 12 weeks for one sample) and it is therefore difficult to
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extract an accurate description of the evolution of Tg with the cooling rate. Nevertheless we
attempted to fit these average simulation values assuming a power-law dependence of Tg with
the cooling rate as suggested by the mode-coupling theory [24]:

Tg(γ ) = Tc + (Aγ )1/δ (1)

with Tc = 676 ± 75 K, A = 3.0 ± 2.3 × 1031 and δ = 17.1 ± 0.1 (the errors given for the
parameters of the fit have been evaluated by fitting the extreme (lowest and highest) Tg values
enclosed in the error bars). We observed that a variation of γ by about 1 decade gives rise
to a variation of Tg of about 75 K which is not much larger, compared to the difference of
magnitude of the cooling rates, than the variation of 10 K measured in real experiments for
different materials [10, 11, 24]. Then by extrapolating the results of our fit down to the usual
experimental cooling rates, i.e. 100–105 K s−1, we observed at this scale that a variation of γ

by about 1 decade gives rise to a variation of Tg of about 13 K, which is in agreement with
the experimental variation of 10 K previously mentioned. We have represented in figure 2 the
result of this work together with a few experimental data [2, 14, 15]. The agreement between
the extrapolation of the fit and the experimental values of Tg shows that our model is able to
give a correct tendency of the variation of Tg with γ , even though the poor statistics prevents
us from having accurate estimates of Tg at a specific (high) cooling rate. This can be improved
with more simulations in order to reduce the error bars.

3.2. Structural properties

3.2.1. Radial pair correlation functions and bonding properties. In glassy GeS2 the basic
building blocks are GeS4 tetrahedra, connected together to form a random network. The
structural disorder is reflected by the absence of long-range order and by the wide distribution
of bond lengths and bond angles. Structural information may be extracted from the radial pair
correlation function g(r) which can be defined for a given α, β pair by:

gαβ(r) = V

4πr 2ρNcαcβ

∑

i �= j

δ(r − ri j) (2)

where ρ is the number density of the system, cα the fraction of species α in the system, i the
atoms of species α and j the atoms of species β . For each cooling rate we averaged the radial
pair correlation functions gαβ(r) of the five samples, so we are able to compare the evolution
of the average gαβ(r) according to the cooling rate (figures 3 and 4).

The bond lengths appear to be in good agreement with experimental data [2] since we
find 2.23 Å for the Ge–S bond (expe.: 2.21 Å), 2.91 and 3.49 Å for respectively the edge and
corner sharing Ge–Ge connections (expe: 2.91 and 3.42 Å). This good agreement is true even
for the highest cooling rates. The main influence of the cooling rate is reflected in the small
peak corresponding to homopolar bonds between 2.2 and 2.6 Å for Ge (figure 3) and 2.1 and
2.45 Å for S (figure 4). Our results indicate that the number of homopolar bonds decreases
with the cooling rate and it is therefore justified to address the question of the existence
of homopolar bonds at experimental cooling rates which is still an open question (Cai and
Boolchand, using a Raman scattering experiment, showed the existence of homopolar bonds
in glassy GeS2 [25] while Petri and Salmon found no evidence of such bonds in gGeS2 using
neutron diffraction [14] studies). According to figures 3 and 4 it seems that the decrease of
the proportion of homopolar bonds slows down for the lowest cooling rates and tends towards
a limit of 1.9% for the Ge atoms and 1.2% for the S atoms. These limiting values are small
but nonzero, and therefore our simulation results seem to confirm the existence of homopolar
bonds in experimental glassy GeS2.
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Figure 3. Partial radial pair distribution function g(r) [Ge–Ge] as a function of the cooling rate.
Enlargement corresponds to details of the peak due to homopolar bonds.

Figure 4. Partial radial pair distribution function g(r) [S–S] as a function of the cooling rate.
Enlargement corresponds to details of the peak due to homopolar bonds.

The simulation gives access to the positions of the atoms; therefore we can also
obtain information on the connectivity of the network. In our approach we focused on the
ratio between edge and corner sharing tetrahedra and the evolution of the different local
environments of the Ge (table 1) and S atoms (table 2).

First it is worth noting that the proportion of edge- and corner-sharing links is almost a
constant independent of the cooling rate: 84% ± 1.8 of corner-sharing and 16% ± 1.8 of edge-
sharing bounds, values in good agreement with experimental data [2]. This is in contrast with
the evolution of the proportions of germanium (table 1) and sulfur (table 2) in their standard
environment (respectively a four-fold S coordination for Ge and a two-fold Ge coordination
for S) which increase appreciably with decreasing cooling rate. The second point concerns,
as expected, the decrease of the chemical disorder with decreasing cooling rate. Indeed the
proportion of under-coordinated Ge atoms (2.3% for the fastest cooling rate) disappears for
the slowest cooling rate. And the proportions of non-bridging S atoms and over-coordinated S
atoms, respectively 14.25% and 12.85%, decrease to 10.4% and 9.8%.
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Table 1. Evolution of the local structural environment of Ge atoms as a function of the cooling
rate γ .

Proportion of Ge atoms (%)

γ (1014 K s−1) Ge(S4) Ge(S3) Ge(GeS3)

3 93.0 ± 2.0 2.3 ± 1.8 3.7 ± 2.1
0.6 95.0 ± 1.6 1.7 ± 1.1 1.9 ± 2.0
0.3 96.2 ± 1.8 0.3 ± 0.3 2.8 ± 2.0
0.12 96.4 ± 1.8 1.7 ± 1.8 1.9 ± 2.0
0.09 97.6 ± 1.7 0.1 ± 0.1 1.8 ± 1.0
0.06 98.1 ± 1.0 0.0 ± 0.0 1.9 ± 1.1

Table 2. Evolution of the local structural environment of S atoms as a function of the cooling
rate γ .

Proportion of S atoms (%)

γ (1014 K s−1) S(Ge2) S(Ge) S(Ge3) S(GeS) S(Ge2S)

3 67.9 ± 2.2 14.3 ± 1.5 12.9 ± 1.8 3.1 ± 1.3 1.8 ± 0.9
0.6 71.0 ± 4.1 12.9 ± 2.0 12.6 ± 1.8 2.1 ± 0.8 0.4 ± 0.3
0.3 75.5 ± 2.6 11.4 ± 1.0 10.7 ± 1.2 2.0 ± 1.3 0.4 ± 0.6
0.12 76.1 ± 2.7 10.9 ± 1.2 10.5 ± 1.3 1.7 ± 0.8 0.6 ± 0.6
0.09 78.2 ± 3.3 10.4 ± 1.6 9.9 ± 1.4 1.1 ± 1.1 0.4 ± 0.3
0.06 78.5 ± 1.0 10.4 ± 0.4 9.8 ± 1.0 0.8 ± 0.3 0.4 ± 0.3

These results indicate that the cooling rate has an impact on the structure of the glass.
Nevertheless while certain types of structural ‘defects’ disappear at low cooling rates, others
survive and can therefore be considered as inherent to the glassy structure.

3.2.2. Static neutron structure factor. An alternative way to analyse the structure is to compute
the static neutron structure factor S(q) which can be directly compared to neutron scattering
experiments:

S(q) = 1

N

∑

j,k

b j bk〈eiq[r j −rk ]〉 (3)

where N is the number of atoms and b j is the neutron scattering factor for atom j .
As for the radial pair distribution functions, we averaged for each cooling rate the total

neutron structure factors of the five samples, thus permitting a comparison of the evolution of
the average structure factors as a function of the cooling rate (figure 5).

First we note the accurate description of glassy GeS2 reflected in the good agreement
between the simulated curves and the experimental one, even for the highest cooling rates.
Although the simulated and experimental curves present differences in the range 0–2.5 Å

−1

it has already been shown [6, 7, 26] that the physical properties of the so-simulated glassy
samples are in good agreement with experiment. The first sharp diffraction peak (FSDP), the
signature of the intermediate-range order (IRO) in amorphous samples, appears at ≈1 Å

−1
and

is, as expected in such simulations, slightly underestimated [5]. Size effects can be considered
as an explanation, nevertheless we note that a decrease in the cooling rate globally improves
the calculated structure factor and in particular the FSDP (figure 5), which highlights that the
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Figure 5. Total simulated static neutron structure factors. Enlargement corresponds to the FSDP
part of the S(q).

Figure 6. �S(q) for the IRO, between experiment and liquid GeS2, and between experiment and
glassy GeS2 for the different cooling rates.

IRO is also dependent on cooling rate. However, there is no linear/regular evolution of S(q)

with cooling rate. To illustrate the improvement of S(q) in the FSDP region with the decrease
in the cooling rate, we represent (in figure 6) the difference, between 0 and 2.5 Å

−1
, of the

experimental total neutron structure factor and:
(1) the total neutron structure factor of the liquid state at 2000 K:

S(q)exp − S(q)liq = �S(q)exp−liq

(2) the average total neutron structure factor of the simulated glass quenched down to 300 K at
the rate γ :

S(q)exp − S(q)γ = �S(q)exp −γ .

�S(q)exp−liq is a reference representing the biggest variation between the experimental and
simulated S(q) and should be compared to �S(q)exp −γ . We see in figure 6 that by decreasing
the cooling rate the difference �S(q)exp −γ decreases. In particular it appears that for cooling
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Table 3. Löwdin charges according to the local structural environments in an equilibrium liquid
GeS2 at 2000 K.

Environment q Proportion (%)

Ge(S4) +0.96 ± 0.04 64.83
Ge(S3) +1.02 ± 0.06 27.41
Ge(GeS3) +0.75 ± 0.1 1.14

Ge–S–Ge −0.43 ± 0.15 60.22
Ge–S −0.92 ± 0.21 26.03
Ge
Ge > S-Ge −0.03 ± 0.11 9.74
Ge–S–S −0.1 ± 0.18 2.07
Ge
Ge > S–S 0.32 ± 0.2 1.60

rates higher than 0.3 × 1014 K s−1 the differences �S(q)exp −γ are very close to the difference
�S(q)exp−liq. For the highest cooling rate (3×1014 K s−1) this difference is even quasi identical
to �S(q)exp−liq which indicates that there is no real change in the IRO between the fastest
quenched glass and the liquid phase. One can thus argue that the fastest cooled samples are too
similar to the liquid and cannot therefore be considered as glassy GeS2 samples. This defines
a limit for the maximum cooling rate usable in MD simulations in order to avoid interferences
between the liquid and the glassy state. In our simulations this limit appears to be between
0.6 ×1014 K s−1 and 0.3 ×1014 K s−1. Nevertheless this limit is directly related to the method,
i.e. ab initio MD simulations, and indirectly related to our model, i.e. the nature of the glass
and the characteristics of the atomic pseudopotentials, and therefore the numerical value of this
limit cannot be straightforwardly extended to other simulated glassy systems.

3.2.3. Atomic charges. Even if atomic charges cannot actually be determined experimentally,
relevant tools such as Löwdin [27] or Mulliken [28] population analysis can be used to compare
different configurations with the same description. In the present work the Löwdin description
has been chosen in order to compare the dependence of the atomic charges on the cooling rate.
However, it should be mentioned that the non-self-consistent Harris functional is known to
overestimate the charge transfers between the atoms.

The atomic charge q is calculated by the difference between the number of electrons
of the neutral atom and the ‘real’ number of electrons of the atom in the glass. We found
no dependence of the Löwdin charges on the cooling rate. Thus it is necessary to correlate
the charges with the evolution of the proportion of each atomic type in its local structural
environment with the cooling rate (tables 1 and 2).

As expected, the general polarity of the Ge–S bond is found with a charge transfer in an
ordered Ge(S4)1/2 configuration of +0.94 for the Ge atoms and −0.46 for the S atoms. As
has already been shown in a previous work [6] Ge charges are always positive and decrease
with the number of neighbours, whereas S charges are more variable with respect to the local
environment: from strongly negative charges for non-bridging S atoms (−1.07) to almost
neutral charges for three-fold Ge-coordinated S atoms. And even if the existence of positively
charged S atoms in the environment Ge

Ge > S-S is confirmed in our present work, table 2 shows
that this kind of local structural environment disappears rapidly with decreasing cooling rate.
These structures obtained at high cooling rate may be explained by the results shown in table 3,
representing the charge of an atom in a given local structural environment and the proportion
of atoms in this environment in an equilibrium GeS2 liquid at 2000 K. Indeed it appears that
the configuration of the liquid is quite similar, at least for the S atoms, to the fastest cooled
glass configurations (table 2). This result indicates that the fastest cooled glasses are, in the
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Table 4. Evolution of the average number of charged zones as a function of the cooling rate γ .

Averaged number of charged zones

γ (1014 K s−1) �QSR > +0.3 �QSR < −0.3

3 9.0 ± 1.0 20.8 ± 1.2
0.6 9.0 ± 2.0 19.2 ± 0.8
0.3 8.4 ± 1.6 17.2 ± 0.8
0.12 8.6 ± 1.4 16.0 ± 1.0
0.09 7.8 ± 1.8 15.8 ± 0.2
0.06 9.2 ± 0.8 16.4 ± 0.6

literal sense, frozen liquids. This confirms what we have already detected in the total neutron
structure factor.

Positively and negatively charged zones inside the glass have been reported in our previous
study [6] for the highest cooling rate. In order to see if the atomic charges measured for the
lowest cooling rate confirm or reject the existence of such zones we looked at the short-range
charge deviation �QSR of a particle i defined by:

�QSR(i) = q(i) +
n(i)∑

j=1

q( j)

n( j)
. (4)

This allows us to take into account the atomic charge q(i) of a given particle i as well as the
charges on its n(i) nearest neighbours (determined from the radial pair distribution function).
Whereas for a crystalline structure, in which no bond defects are present, this value is almost
zero for all the particles, positive and negative values appear for glassy samples.

In table 4 we have reported the evolution of the number of charged zones (a charged zone
contains at least two nearest neighbours having the same sign for �QSR) as a function of the
cooling rate.

The number of positively charged zones (particles with �QSR > +0.3) is almost constant
and equal to 9, with no dependence on the cooling rate, whereas the number of negatively
charged zones (particles with �QSR < −0.3) decreases slightly from ∼20 for samples cooled
at 3 × 1014 K s−1 to ∼16 for samples cooled at a rate less than 0.3 × 1014 K s−1 (this is again
consistent with the idea of a maximum cooling rate usable in MD simulations). The negatively
charged zones are principally made of Ge atoms coordinated to one or more non-bridging
sulfur atoms and, for the fastest cooled glasses, of a few S–S–Ge structures. As already shown
(table 2) these structures disappear with decreasing cooling rate. This observation correlated
with the diminution of the proportion of non-bridging sulfur atoms gives an explanation for
the decrease in the number of negatively charged zones with cooling rate for rates higher than
0.3 × 1014 K s−1. The positively charged zones are exclusively made of Ge atoms linked to
over-coordinated S atoms.

In addition we have reported the average number of atoms per charged zone as a function
of the cooling rate (table 5). This shows that the size of the positively and the negatively
charged zones (with respectively five and two atoms per zone) is independent of the cooling
rate and therefore remains constant. It is worth noting that the global neutrality of the glass is
always respected. Our results show that the existence of charged zones in glassy GeS2 is not
influenced by the variation of the cooling rate. They thus confirm those of our previous study,
and show that extended charged zones (whose manifestation has also been detected recently
for other chalcogenide systems by Taraskin et al [29]) reflect the broken chemical order of the
glass and are therefore inherent to the amorphous state.
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Table 5. Evolution of the average number of atoms per charged zone as a function of the cooling
rate γ .

Average number of atoms per charged zone

γ (1014 K s−1) �QSR > +0.3 �QSR < −0.3

3 5.7 ± 0.1 2.1 ± 0.0
0.6 5.2 ± 0.4 2.1 ± 0.1
0.3 5.2 ± 1.1 2.0 ± 0.0
0.12 5.2 ± 0.2 2.1 ± 0.0
0.09 5.2 ± 1.7 2.1 ± 0.0
0.06 4.2 ± 0.2 2.1 ± 0.0

4. Conclusion

Through DFT based molecular dynamics simulations we have analysed the effect of the cooling
rate on some properties of glassy GeS2. The influence of the cooling rate on the glass transition
temperature as well as on the structural properties has been studied.

Due to a lack of statistics, mainly as a result of computer time limitations (especially for the
lowest cooling rates), the detailed variation of Tg with the cooling rate could not be obtained.
Nevertheless the extrapolation of our results to ‘realistic’ cooling rates is in good agreement
with the experimental glass transition temperature.

Analysing the radial pair distribution functions and the local structural environments for
each cooling rate, we find that the number of S and Ge homopolar bonds as well as the number
of coordination defects decrease with the cooling rate. Nevertheless the decrease in the number
of homopolar bonds seems limited, and therefore it is reasonable to think that this type of
defect is present in real glasses. However, calculations at lower cooling rates should be done to
confirm this observation.

Study of the simulated total neutron structure factor has confirmed the reliability of our
model for the description of glassy GeS2. We have analysed the effect of the cooling rate on
the intermediate-range order whose signature is the first sharp diffraction peak. The simulated
FSDP is closer to the experimental one for the slowest cooled glasses. By comparison with
the properties of the liquid state, we have shown that a maximum cooling rate should not be
exceeded in the simulation in order to reproduce the IRO characteristic of the glassy phase. The
value of this maximum cooling rate will depend on the details of the model used to describe
a given system. The existence of a maximum cooling rate has also been supported by the
analysis of the charges, which has revealed that the electronic configuration of the fastest cooled
glasses is close to the one obtained in liquid GeS2. In addition the existence of positively
and negatively charged regions in the amorphous state has been clearly confirmed even for
the lowest cooled samples and seems therefore inherent to the glassy state. These regions
will have an important impact on the properties of samples containing metallic ions, as shown
recently [26].
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[11] Brüning R and Sutton M 1994 Phys. Rev. B 49 3124–30
[12] Miyagawa H and Hiwatari Y 1989 Phys. Rev. A 40 6007–13
[13] Vollmayr K, Kob W and Binder K 1996 Phys. Rev. B 54 15808–27
[14] Petri L and Salmon P S 2001 J. Non-Cryst. Solids 202 169
[15] Feng X, Bresser W J and Boolchand P 1997 Phys. Rev. Lett. 78 4422–5
[16] Sankey O F and Niklewski D J 1989 Phys. Rev. B 40 3979–95
[17] Hohenberg P and Kohn W 1964 Phys. Rev. 136 864–71
[18] Kohn W and Sham L J 1965 Phys. Rev. 140 1133–8
[19] Bachelet G B, Hamann D R and Schlüter M 1982 Phys. Rev. B 26 4199–28
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